Techies forums
Would you like to react to this message? Create an account in a few clicks or log in to continue.
Techies forums

Forum for the students of Tagore engineering college IT department


You are not connected. Please login or register

Assignments~ Bluetooth Technologies

Is it useful..?

Assignments~ Bluetooth Technologies I_vote_lcap50%Assignments~ Bluetooth Technologies I_vote_rcap 50% [ 1 ]
Assignments~ Bluetooth Technologies I_vote_lcap50%Assignments~ Bluetooth Technologies I_vote_rcap 50% [ 1 ]
Assignments~ Bluetooth Technologies I_vote_lcap0%Assignments~ Bluetooth Technologies I_vote_rcap 0% [ 0 ]
Total Votes : 2


Go down  Message [Page 1 of 1]

1Assignments~ Bluetooth Technologies Empty Assignments~ Bluetooth Technologies Thu Aug 26, 2010 1:18 am

babu vignesh

babu vignesh
grown up punk
grown up punk

BLUETOOTH TECHNOLOGY
Definition:
Bluetooth technology is a wireless protocol that connects electronic devices while they are close to each another.Instead of creating a local-area network (LAN) or a wide-area network (WAN), Bluetooth creates a personal-area network (PAN) just for you. Cell phones, for example, can be paired with wireless Bluetooth headsets.
When used in tandem with a Bluetooth-enabled cell phone and successfully paired, you can leave your cell phone in your pocket and perform most of your mobile phone’s functions using your in-ear Bluetooth headset.
Bluetooth is an open wireless technology standard for exchanging data over short distances (using short length radio waves) from fixed and mobile devices, creating personal area networks (PANs) with high levels of security. Created by telecoms vendor Ericsson in 1994,[1] it was originally conceived as a wireless alternative to RS-232 data cables. It can connect several devices, overcoming problems of synchronization. Today Bluetooth is managed by the Bluetooth Special Interest Group.
The word Bluetooth is an anglicised version of Danish Blåtand, the epithet of the tenth-century king Harald I of Denmark and parts of Norway who united dissonant Danish tribes into a single kingdom. The implication is that Bluetooth does the same with communications protocols, uniting them into one universal standard.
The Bluetooth logo is a bind rune merging the Younger Futhark runes (Hagall) and (Bjarkan), Harald's initials.
Implementation
Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands of 1 MHz width in the range 2402-2480 MHz. This is in the globally unlicensed Industrial, Scientific and Medical (ISM) 2.4 GHz short-range radio frequency band.
In Classic Bluetooth, which is also referred to as basic rate (BR) mode, the modulation is Gaussian frequency-shift keying (GFSK). It can achieve a gross data rate of 1 Mbit/s. In extended data rate (EDR) p/4-DQPSK and 8DPSK are used, giving 2, and 3 Mbit/s respectively.
Bluetooth is a packet-based protocol with a master-slave structure. One master may communicate with up to 7 slaves in a piconet; all devices share the master's clock. Packet exchange is based on the basic clock, defined by the master, which ticks at 312.5 µs intervals. Two clock ticks make up a slot of 625 µs; two slots make up a slot pair of 1250 µs. In the simple case of single-slot packets the master transmits in even slots and receives in odd slots; the slave, conversely, receives in even slots and transmits in odd slots. Packets may be 1, 3 or 5 slots long but in all cases the master transmit will begin in even slots and the slave transmit in odd slots.
Bluetooth provides a secure way to connect and exchange information between devices such as faxes, mobile phones, telephones, laptops, personal computers, printers, Global Positioning System (GPS) receivers, digital cameras, and video game consoles.
The Bluetooth specifications are developed and licensed by the Bluetooth Special Interest Group (SIG). The Bluetooth SIG consists of more than 13,000 companies in the areas of telecommunication, computing, networking, and consumer electronics.
To be marketed as a Bluetooth device, it must be qualified to standards defined by the SIG.

Communication and connection
A master Bluetooth device can communicate with up to seven devices in a Wireless User Group. This network group of up to eight devices is called a piconet. The devices can switch roles, by agreement, and the slave can become the master at any time.
At any given time, data can be transferred between the master and one other device.
The master switches rapidly from one device to another in a round-robin fashion. Simultaneous transmission from the master to multiple other devices is possible via broadcast mode, but not used much.
The Bluetooth Core Specification allows connecting two or more piconets together to form a scatternet, with some devices acting as a bridge by simultaneously playing the master role in one piconet and the slave role in another.
Many USB Bluetooth adapters or "dongles" are available, some of which also include an IrDA adapter. Older (pre-2003) Bluetooth dongles, however, have limited services, offering only the Bluetooth Enumerator and a less-powerful Bluetooth Radio incarnation. Such devices can link computers with Bluetooth with a distance of 100 meters, but they do not offer much in the way of services that modern adapters do.
Uses
Bluetooth is a standard communications protocol primarily designed for low power consumption, with a short range (power-class-dependent: 100 m, 10 m and 1 m, but ranges vary in practice; see table below) based on low-cost transceiver microchips in each device.[6] Because the devices use a radio (broadcast) communications system, they do not have to be in line of sight of each other.[5]
Class Maximum Permitted Power Range
(approximate)
mW dBm
Class 1 100 20 ~100 meters
Class 2 2.5 4 ~10 meters
Class 3 1 0 ~1 meters

To use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth profiles, which are definitions of possible applications and specify general behaviors that Bluetooth enabled devices use to communicate with other Bluetooth devices. There are a wide range of Bluetooth profiles that describe many different types of applications or use cases for devices.
Applications
A typical Bluetooth mobile phone headset.
Wireless control of and communication between a mobile phone and a hands-free headset. This was one of the earliest applications to become popular.
Wireless networking between PCs in a confined space and where little bandwidth is required.
Wireless communication with PC input and output devices, the most common being the mouse, keyboard and printer.
Transfer of files, contact details, calendar appointments, and reminders between devices with OBEX.
Replacement of traditional wired serial communications in test equipment, GPS receivers, medical equipment, bar code scanners, and traffic control devices.
For controls where infrared was traditionally used.
For low bandwidth applications where higher USB bandwidth is not required and cable-free connection desired.
Sending small advertisements from Bluetooth-enabled advertising hoardings to other, discoverable, Bluetooth devices.
Wireless bridge between two Industrial Ethernet (e.g., PROFINET) networks.
Three seventh-generation game consoles, Nintendo's Wii[10] and Sony's PlayStation 3 and PSP Go, use Bluetooth for their respective wireless controllers.

Wi-Fi is intended for resident equipment and its applications. The category of applications is outlined as WLAN, the wireless local area networks. Wi-Fi is intended as a replacement for cabling for general local area network access in work areas.
Bluetooth is intended for non-resident equipment and its applications. The category of applications is outlined as the wireless personal area network (WPAN). Bluetooth is a replacement for cabling in a variety of personally carried applications in any ambience and can also support fixed location applications such as smart energy functionality in the home (thermostats, etc.).
A Bluetooth-enabled mobile phone is able to pair with many devices. To ensure the broadest support of feature functionality together with legacy device support, the Open Mobile Terminal Platform (OMTP) forum has published a recommendations paper, entitled "Bluetooth Local Connectivity".
The Bluetooth specification was developed in 1994 by Jaap Haartsen and Sven Mattisson, who were working for Ericsson in Lund, Sweden.[18] The specification is based on frequency-hopping spread spectrum technology.
The specifications were formalized by the Bluetooth Special Interest Group (SIG). The SIG was formally announced on May 20, 1998. Today it has a membership of over 13,000 companies worldwide. It was established by Ericsson, IBM, Intel, Toshiba, and Nokia, and later joined by many other companies.
Expected use cases for Bluetooth low energy technology include sports and fitness, security and proximity and smart energy. Bluetooth low energy technology is designed for devices to have a battery life of up to one year such as those powered by coin-cell batteries. These types of devices include watches that will utilize Bluetooth low energy technology to display Caller ID information and sports sensors that will be utilized to monitor the wearer's heart rate during exercise. The Medical Devices Working Group of the Bluetooth SIG is also creating a medical devices profile and associated protocols to enable Bluetooth applications for this vertical market.
Bluetooth protocol stack
Main articles: Bluetooth stack and Bluetooth protocols
"Bluetooth is defined as a layer protocol architecture consisting of core protocols, cable replacement protocols, telephony control protocols, and adopted protocols."[35] Mandatory protocols for all Bluetooth stacks are: LMP, L2CAP and SDP. Additionally, these protocols are almost universally supported: HCI and RFCOMM.
Pairing mechanisms
Pairing mechanisms have changed significantly with the introduction of Secure Simple Pairing in Bluetooth v2.1. The following summarizes the pairing mechanisms:
Legacy pairing: This is the only method available in Bluetooth v2.0 and before. Each device must enter a PIN code; pairing is only successful if both devices enter the same PIN code. Any 16-byte UTF-8 string may be used as a PIN code, however not all devices may be capable of entering all possible PIN codes.
Limited input devices: The obvious example of this class of device is a Bluetooth Hands-free headset, which generally have few inputs. These devices usually have a fixed PIN, for example "0000" or "1234", that are hard-coded into the device.
Numeric input devices: Mobile phones are classic examples of these devices. They allow a user to enter a numeric value up to 16 digits in length.
Alpha-numeric input devices: PCs and smartphones are examples of these devices. They allow a user to enter full UTF-8 text as a PIN code. If pairing with a less capable device the user needs to be aware of the input limitations on the other device, there is no mechanism available for a capable device to determine how it should limit the available input a user may use.
Secure Simple Pairing (SSP): This is required by Bluetooth v2.1. A Bluetooth v2.1 device may only use legacy pairing to interoperate with a v2.0 or earlier device. Secure Simple Pairing uses a form of public key cryptography, and has the following modes of operation:
Just works: As implied by the name, this method just works. No user interaction is required; however, a device may prompt the user to confirm the pairing process. This method is typically used by headsets with very limited IO capabilities, and is more secure than the fixed PIN mechanism which is typically used for legacy pairing by this set of limited devices. This method provides no man in the middle (MITM) protection.
Numeric comparison: If both devices have a display and at least one can accept a binary Yes/No user input, they may use Numeric Comparison. This method displays a 6-digit numeric code on each device. The user should compare the numbers to ensure they are identical. If the comparison succeeds, the user(s) should confirm pairing on the device(s) that can accept an input. This method provides MITM protection, assuming the user confirms on both devices and actually performs the comparison properly.
Passkey Entry: This method may be used between a device with a display and a device with numeric keypad entry (such as a keyboard), or two devices with numeric keypad entry. In the first case, the display is used to show a 6-digit numeric code to the user, who then enters the code on the keypad. In the second case, the user of each device enters the same 6-digit number. Both cases provide MITM protection.
Out of band (OOB): This method uses an external means of communication (such as NFC) to exchange some information used in the pairing process. Pairing is completed using the Bluetooth radio, but requires information from the OOB mechanism. This provides only the level of MITM protection that is present in the OOB mechanism.

http://engg.canadaboard.net/forum.htm

Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum